If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+112x-1323=0
a = 16; b = 112; c = -1323;
Δ = b2-4ac
Δ = 1122-4·16·(-1323)
Δ = 97216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{97216}=\sqrt{3136*31}=\sqrt{3136}*\sqrt{31}=56\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-56\sqrt{31}}{2*16}=\frac{-112-56\sqrt{31}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+56\sqrt{31}}{2*16}=\frac{-112+56\sqrt{31}}{32} $
| 3(2a-6)+4a=16 | | 4/5(12-5x)=50 | | 16x^2+112x+1323=0 | | b+35=16 | | M-2(4+2m)=-4m-2 | | x+2x-1/3=41/6 | | x(-5)=35 | | –4d−2=–5d+8 | | 1/2x+2/4=6 | | 4m+1+m=14-6 | | 95=180-a | | |6n+6|+18=9 | | 6g=276 | | 7c=217 | | −2x+2=4 | | 6x+9=-56 | | y(3)=-12 | | 5x-2(3x)=44 | | 4(x+3)=-2(x-7) | | n-23=71 | | 360-y=250 | | 4x(x)=96 | | -r/4=-3 | | 5.6=8tt= | | 25+15x=100-10x | | 5(y–3)=y+1 | | 7(y-4)-3=-3(-9y+7)-4y | | 59x+3=59x+84 | | 5(g–3)+2=3(g+1) | | 1/7y=3 | | 0.2x+0.4=0.5x-1 | | 7a-2(a+8)=29 |